Documenting LeetCode solving.
Q71
215. Kth Largest Element in an Array
Medium.
type MinHeap []int
func (h MinHeap) Len() int {return len(h)}
func (h MinHeap) Less(i, j int) bool {return h[i] < h[j]}
func (h MinHeap) Swap(i, j int) {h[i], h[j] = h[j], h[i]}
func (h MinHeap) Peek() int {return h[0]}
func (h *MinHeap) Push(x interface{}) {*h = append(*h, x.(int))}
func (h *MinHeap) Pop() interface{} {
x := (*h)[len(*h) - 1]
*h = (*h)[:len(*h) - 1]
return x
}
func findKthLargest(nums []int, k int) int {
minh := &MinHeap{}
heap.Init(minh)
for _, num := range nums {
heap.Push(minh, num)
}
for minh.Len() > k {
heap.Pop(minh)
}
return minh.Peek()
}
Q72
2192. All Ancestors of a Node in a Directed Acyclic Graph
Medium. DAG
BFS
func getAncestors(n int, edges [][]int) [][]int {
graph := make([][]int, n)
res := make([][]int, n)
for _, e := range edges {
graph[e[0]] = append(graph[e[0]], e[1])
}
for i := 0; i < n; i++ {
bfs(i, graph, res)
}
return res
}
func bfs(a int, graph [][]int, res [][]int) {
queue := make([]int, 0)
seen := map[int]bool{}
seen[a] = true
queue = append(queue, a)
for len(queue) > 0 {
c := queue[0]
queue = queue[1:]
for _, v := range graph[c] {
if !seen[v] {
seen[v] = true
queue = append(queue, v)
res[v] = append(res[v], a)
}
}
}
}
Q73
1857. Largest Color Value in a Directed Graph
DFS
func maxCount(counts [26]int) int {
maxVal := 0
for _, count := range counts {
maxVal = max(maxVal, count)
}
return maxVal
}
func largestPathValue(colors string, edges [][]int) int {
// Different graph stucture (map) because the size is unknown
graph := make(map[int][]int)
for _, e := range edges {
graph[e[0]] = append(graph[e[0]], e[1])
}
n, res := len(colors), 0
visit := make(map[int]bool)
// Track cycle
path := make(map[int]bool)
count := make([][26]int, n)
var dfs func(node int) int
dfs = func(node int) int {
if path[node] == true {
return math.MaxInt32
}
if visit[node] == true {
return 0
}
visit[node] = true
path[node] = true
colorIndex := int(colors[node]) - int('a')
count[node][colorIndex] = 1
for _, nei := range graph[node] {
if dfs(nei) == math.MaxInt32 {
return math.MaxInt32
}
for c := 0; c < 26; c++ {
if c == colorIndex {
count[node][c] = max(count[node][c], 1 + count[nei][c])
} else {
count[node][c] = max(count[node][c], count[nei][c])
}
}
}
path[node] = false
return maxCount(count[node])
}
for i := 0; i < n; i++ {
res = max(res, dfs(i))
}
if res == math.MaxInt32 {
return -1
} else {
return res
}
}
ย